
The Distributed Database Protocol

http://everstore.io

Last updated on August 16th, 2017

http://everstore.io

Table of Contents

Abstract
Introduction
Current Requirements

OP_RETURNs
HD (BIP32) Key-Trees

Defining an Instance
Routes
Node Map

Meta Node
Credit Node
Schema-Tree
Index-Tree
Record-Tree
Accumulation-Tree
Public-Tree

Events
Preparing Nodes
Committing Data
Reading Data
Updating Data
Deleting Data

Datastores
Fields
Advanced Field Types

Index Fields (Field 0)
Auto Fields
Email Fields
URL Fields
Object Fields
Enumeration Fields
Geolocation Fields
Public Fields
JSON Fields
Total Fields
Count Fields
Media Fields
Lookup Fields

Records
Relationships

Example Applications
Serverless Interfaces
Embedded Schemas
Example Everstore Event Schema
External Integration

Limitations and Caveats
Blockchain’s CAP Theorem

Economic Implications & Conclusions
References

Page 2 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

Abstract
Since the advent of Bitcoin[1] the ecosystem has been lacking a solution to store
arbitrary forms of data within the underlying blockchain itself. Most approaches are
limited to the storing of anchored data-hashes such as those provided by Factom[2] and
Tierion[3], with the actual data then stored off-chain. By employing a distributed database
as a protocol, entities are able to read or write structured data directly into or out of a
compatible blockchain - removing the need to store any of that information within their
own siloed databases. Applications could operate freely without the need to rely on a
centralised version of the truth; confident that the data they have received is from an
immutable source. The ability to store complete data schemas and their corresponding
data is achieved by structuring the limited storage space available from within the
OP_RETURN[4] functionality of outgoing transactions across multiple nodes from within
a hierarchical tree of related addresses. These transactions are sent from specifically
derived HD (Hierarchical Deterministic) BIP32[5] addresses - where each branch of
derived addresses represents a certain series of actions and (or) defining properties.

(Figure A - Abstract View of Everstore Node-Map)

Page 3 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

Introduction
Bitcoin, blockchain technology, and other new forms of distributed ledgers have forced a
major rethink of how organisations and applications can share data, track digital assets,
and perform transactions across various networks. While the idea of blockchains is
relatively new and still evolving, the numerous computer science methods that have
been merged together in order to create them are not. From the hashes and various
encryption algorithms that were created in the 1970s, through to the more recent
peer-to-peer inclusions that were popularised in the 1990s by Napster; blockchains are
built upon solid foundations that combine several well proven technologies.

The same can be said for Everstore; in that its development is merely a merger of
numerous established blockchain standards that have been repurposed in order to
expand the capability of the underlying blockchain. By introducing new features as
protocols that can work across multiple blockchains as a layer of added functionality,
rather than building this functionality directly into the base protocol and it’s mining
process - such as Ethereum[6] has done; we reaffirm permissionless innovation. We
believe that the mining process should be as simple as possible and that with fewer
moving parts, there is far less chances of running into problems. When it comes to
maintaining an immutable record of data it is nice to have as few problems as possible.

The main purpose for developing Everstore was to allow distributed applications to be
dynamically available from any static environment, without the need for ongoing hosting
providers and their associated costs. In doing so, we have been able to add previously
unavailable database-like characteristics and functionality to blockchains that do not
support and need not support them natively. By using an established and secure
blockchain as an actual storage engine, databases can efficiently and transparently do
entirely new things, such as providing new “public” fields that allow for values to be
voted on as well as knowing that all values are derived from an immutable event-store.

If you are able to imagine a distributed, freely available, always-on version of Meteor[7]

that does not require registration, credit cards or any other form of direct payment, you
are almost able to understand the potential of a distributed database as a protocol. Free
of censorship and vendor lock-in, data can be shared between entities to create new
opportunities within multiple industries. From governance to gaming, self-managed
identities and interoperable medical-records, deeds, titles and ownership; it’s hard to
imagine a world without distributed data-management once you catch that first glimpse.

Page 4 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

Current Requirements
Everstore is blockchain-agnostic, with the only requirements being the ability to add at
least 38 bytes of arbitrary data within a distributed peer-to-peer network transaction and
the ability to generate network addresses using the HD (BIP32) methodology. Everstore
has already been successfully tested on both the Bitcoin and Dogecoin blockchains, as
well as their corresponding testnets. Data can be encoded directly into multiple
blockchains at the same time or switched from one to another at any future point, which
prevents the risk of locking data into one particular source or vendor, while also
enabling for new forms of autonomous distributed backups.

OP_RETURNs
Bitcoin and other similar cryptocurrencies use a FORTH-like scripting language for
handling transactions. This list of stacked instructions, known as the script, describes to
the network the conditions with which the next person wanting to spend any of the coins
from the transaction are able to access them. In the majority of transactions, these
instructions are simple and allow anyone with the private key to access the coins.
However, there are over 50 operational codes that can be used within the script to cater
for a wide range of use cases. One of these codes is known as an OP_RETURN, which
is a standardized way to add extra data to a zero-value output that is attached to a valid
transaction. An OP_RETURN on the Bitcoin blockchain can include up to 38 bytes of
arbitrary data, whereas the Dogecoin blockchain allows for up to 78 bytes.

HD (BIP32) Key-Trees
The Bitcoin reference client uses random seeds in order to generate new cryptographic
private keys for each address and then stores each of those keys locally. However, in
2012, BIP32 introduced a new optional standardized method for generating key-tree
chains in a predictable way - all of which could be derived from a single master key.
Hierarchical Deterministic Wallets are capable of creating vast numbers of cryptographic
keys, and because they can be recreated in different environments by using the same
base seed and mathematical inputs, there is no need to save each and every key.
Given the master public key, other entities are also able to follow the HD (BIP32)
specifications and independently calculate descending public keys without needing to
know the secret seed originally used to generate the master keys.

Page 5 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

Defining an Instance
In order to broadcast to the blockchain that a particular master key is being used as an
Everstore instance, we must first relay the desired name of the instance to the network.
This can be done by following the relevant route from the node-map below to find the
correct address from which to commit a valid meta-entry.

Routes
Routes are the mathematical paths that are used by the HD (BIP32) algorithm to reach
individual nodes from within the key-tree and always assumes that the starting point is
the master key. In order to reach the meta node we would use a route of 1, whereas
reaching the thirty-eighth field from within the six thousand and thirty-second datastore
schema would use a route of 2 | 6032 | 38.

Node Map
The node-map defined by the Everstore protocol is a way to map the different branches
of the master key-tree to their corresponding uses. If each Everstore instance uses the
same node-map, other independent applications can retrieve data from the blockchains
whilst only needing to know the master public key. For added obfustication, applications
could elect to define their own unique node-maps, which would prevent anyone with any
of the keys to be able to recreate the data without also knowing the correct node-map.
The current default Everstore node-map can be introduced as follows:

Use Route

Meta Node 1

Credit Node 1 | 1

Schema-Tree 2

Index-Tree 3

Record-Tree 4

Accumulation-Tree 5

Public-Tree 6

Page 6 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

Meta Node
The meta node is the point from where transactions containing information related to the
instance should be sent from - such as the name of the instance. Data contained within
the meta node transactions should be added to the blockchain with an “es” checksum
and then piped with the name and value of the attributes added.

In the case of first defining the Everstore instance with the name “Testing Everstore”
the data added to the OP_RETURN would be as follows (in-turn utilizing 25 bytes):

Route 1 OP_RETURN* = es|name|Testing Everstore

*Please note that future piping options may have spaces, but only so they are easier to view.

FYI: | This | is | an | example | of | piping

Credit Node
The credit node is the point from where the funds for each transaction are taken, sent
and returned (when change is required). In future versions, different descendants of the
credit node could be used for different purposes and (or) different users.

Schema-Tree
The schema-tree is the point from where an Everstore instance is able to define the
properties of the required datastores and their corresponding fields. The first level of
descendants is used to define the datastores themselves, whereas each of their
descendants is then used to define the fields for that particular datastore.

Index-Tree
The index-tree is the point from where the primary data-key (field 0) for new records is
first registered in order to provide a unique transaction ID that can then be converted
into a unique tree-route for that particular record, which is known as a transaction-route.

Record-Tree
The record-tree is the point from where transaction-routes are traversed in order to
retrieve the individual record-node - with each of its descendants representing the fields
belonging to that record as defined by the schema.

Page 7 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

Accumulation-Tree
The accumulation-tree is the point from where the accumulated field-types (total, count
and media) are stored. In each of these cases, the initial value (V) of the relevant field
(F) from the associated datastore (D) act as integer based pointers to reach the true
value of the field, which is calculated by first reaching the relevant accumulation-node:

Use Route

Relevant Total Node 5 | 1 | D | F | V

Relevant Count Node 5 | 2 | D | F | V

Relevant Media Node 5 | 3 | D | F | V

This allows the initial value to act as a version number to manually redirect references
to the relevant data when wishing to pseudo-update or pseudo-delete accumulated
data. More detailed instructions on reading and writing values to accumulated field type
nodes can be seen within the Everstore public repository's technical documentation.

Public-Tree
The public-tree is the point from where the public field type is stored, with each of its
options (unique, count, total and all) each receiving its own sub-tree - where the initial
value (V) of the relevant field (F) from the associated datastore (D) act as integer based
pointers to reach the true value of the field, which is calculated by first reaching the
relevant public-node using the advanced node-map below:

Use Route

Relevant Public-Unique Node 6 | 1 | D | F | V

Relevant Public-Count Node 6 | 2 | D | F | V

Relevant Public-Total Node 6 | 3 | D | F | V

Relevant Public-All Node 6 | 4 | D | F | V

More detailed instructions on reading and writing values to public field type nodes can
be seen within the Everstore public repository's technical documentation.

Page 8 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

Events
There are two phases to each Everstore data-transaction. First we must prepare the
relevant nodes so that they have the necessary funds. Once this has been done, we
can then commit the data piece by piece from each of the prepared nodes.

Preparing Nodes
Since preparing the nodes does not require an OP_RETURN, we are able to prepare
multiple nodes within a single blockchain transaction. We typically prepare individual
nodes by sending them twice the minimum network mining fee, which is enough to then
send back the minimum network mining fee whilst also paying the network the minimum
mining fee required for relaying that transaction to the network. It is also worth clarifying
that payment of the minimum network mining fee is also required in order to prepare the
nodes, which is why data-transactions are batched and processed within two phases.

Committing Data
Once all of the nodes for a particular data-transaction-batch have been prepared, the
individual commits can begin to be processed. Each commit should contain only a
single OP_RETURN, but it can be placed in one of three ways:

1. Primary OP_Return Placement (the first output in the transaction)
2. Secondary OP_Return Placement (by default it is the second and final output)
3. Split OP_Return Placement (by having it as the second output but also having

a third valid output, which is the circumstance under which a node must be
prepared with three times the minimum network mining fee rather than just twice)

The data stored within the OP_RETURN can have one of three levels of transparency:

1. Public (default setting - anyone viewing the transaction is able to see the data)
2. Secure (anyone with access to the private key to that node or its hash can view)
3. Private (only those with access to the master private key or its hash can view)

Non-public encoding uses AES encryption with a hash of the relevant key as its secret.

Page 9 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

Reading Data
When reading data from a node - the latest transaction typically represents the current
value or requested property, with previous transactions representing an audit trail of
changes. An exception to this method is when viewing transactions that are derived
from the index-tree, where each outgoing transaction from its descendant datastore
nodes represent individual records, as this allows for greater numbers of indexed fields
to be retrieved as quickly as possible and from as few places as possible.

(Figure B - Transaction-Route for Finding Records)

Updating Data
Since data cannot be removed from a blockchain, updating data in Everstore is known
as a pseudo-operation, which typically involves sending a new transaction from the
relevant node with the new data attached.

Page 10 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

Deleting Data
Since data cannot be removed from a blockchain, deleting data in Everstore is known
as a pseudo-operation, which typically involves sending a new transaction from the
relevant node with a specific hashbang command (!delete) attached. This also allows
data to be undeleted by another pseudo-update containing non-hashbanged content.

An exception to registering deleted information is in regards to records, where each
outgoing transaction represents an individual record as opposed to the latest value, in
which case we must first check that the corresponding record-node does not have any
of its own outgoing transactions. From this point, each new outgoing transaction should
represent the latest value of the associated indexed field.

(Figure C - Abstract View of Pseudo-Deleting an Everstore Record)

Page 11 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

Datastores
A datastore is the Everstore equivalent of a database table (also known as collections).
Each Everstore instance can hold up to 999,999,9999 datastores, each of which can
have a distinct set of up to 999,999,999 fields and an unlimited number of records, all of
which can have every action taken upon them linked to a single master key.

A datastore can be created with the following properties:

1. Name / Label
2. Transparency (public, secure or private - as mentioned previously)
3. Fields

If we wish to establish our third datastore as one that is not public, we must pipe the
transparency option into the value used to store the name, such as:

OP_RETURN from Node at Route 2 | 3 = My Evestore Name|private

Electing to define a secure or private datastore should instruct applications to force all
other information pertaining to that datastore to be encrypted by the relevant hash.

Fields
Each field can be defined with the following properties:

1. Name / Label
2. Type (defaults to string)
3. Default (defaults to null)
4. Priority (defaults to optional)
5. Transparency (defaults to public)

Available priorities for fields include:

1. Optional (default behaviour also obtained by not defining the priority)
2. Required (meaning a record should not be committed if the field has no value)
3. Unique (meaning a record should not be committed if another record in the same

datastore has the same value as the value of the field being saved)

Page 12 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

Everstore currently supports the following 20 field-types, which have been specifically
introduced for running dynamic serverless and distributed web-based applications.

Type Piped Options Default Option Fixed Choices

Index type auto auto, md5, string

Auto type time time, MD5, increment

String*

Integer* type standard standard, small, big

Float* decimals

Boolean*

Datetime* format dd/mm/yy all valid formats

Email format|text string format = string, HTML

URL format|before|after|text http:// format = string, HTML

Array*

Object

Enumeration

MD5*

JSON

Geolocation

Public type|format all all, total, count | string, float, int

Total type int int, float, string

Count type public int, float, string

Media header image/jpeg all valid headers

Lookup datastore|field

More detailed information regarding the field-types and how different client-applications
should interpret the information is available within the relevant technical documentation.

Page 13 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

However, since the current node-map only uses 6 out of its 999,999,999 available
first-level slots, Everstore has much room for future growth and feature-set expansion.

Field properties are dispersed by the OP_RETURN placement and piped as follows:

1. Secondary Placement = name
2. Primary Placement = type | priority | transparency | options
3. Split Placement = default

For example; in order to register an integer field called “The Answer to Life” with a
default value of 42 as a required field that should be encoded securely, the relevant
node would need to commit three individual transactions as follows:

● 1st TX = The Answer to Life (with a secondary OP_RETURN placement)
● 2nd TX = integer|required|secure (with a primary OP_RETURN placement)
● 3rd TX = 42 (with a split OP_RETURN placement)

This approach allows for all field information to be available from the transactions
associated with a single node rather than needing to gather transactions from five
different nodes. Defining this new field within the embedded schema in a single batch
would have an associated cost of four times the minimum network mining fee. One for
initially preparing the node and three for the individual transactions to define the field.

Advanced Field Types
Those fields listed above with asterisks are common data-types[8] as defined by the
majority of databases, whereas those listed below may require further clarification or
specific explanations as to how and why Everstore uses them:

Index Fields (Field 0)
In the current version, only one field within any record can be indexed and it is currently
fixed to field 0, which by default is an auto-generated hash based upon the time the field
value was generated. This could be changed to an MD5 type and then an email address
could for example get hashed to become the new ID, which would then be used by the
application to more easily allow individuals to look-up their own specific records. It is
important that each of the values for this field remains unique to the datastore it is in,
which is a property that must be enforced by the application.

Page 14 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

Auto Fields
Auto fields can create automatic values based on either the time, an MD5 of the time or
and incremented value based upon the number of outgoing transactions that are
already indexed within the relevant datastore node of the index-tree.

Email Fields
A simple string-based field that should be verified as an email address and can be
rendered by the application as either a string or an actual HTML link with text that is
different to the address by using piped options.

My Email = me@email.com|My Email

This HTML text can also be initiated as a default to all records when set from the field
options as follows: email ||| html | My Email

URL Fields
A simple string-based field with similar rendering options to the email field, which has
been designed to help save potential bytes by being able to set specific start or end
points to the URL when defining the field options as follows:

Example Field Options Stored Value Output

http://neuroware.io/img/ | .png mark-smalley http://neuroware.io/img/mark-smalley.png

http:// | /robots.txt | Robots any-website.com Robots

Object Fields
Objects are similar to arrays but include defined properties and are often used to group
similar items, such as social media profile usernames in the example below:

Field Setup Stored Value Output

TX 1 = Social Profiles

TX 2 =
object ||| fb | twitter | github

mark.smalley | m_smalley | msmalley var social_profiles = {
fb: “mark.smalley”,
twitter: “m_smalley”,
github: “msmalley”

}

Page 15 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

mailto:me@email.com
http://any-website.com/robots.txt
http://everstore.io

Enumeration Fields
Enumeration fields allow fields to have a pre-defined set of values that are accepted
and are often expressed as select boxes when rendered by an HTML application. They
can be defined at a schema level in the same way objects are defined, with the only
difference being that only one of the properties can be selected, rather than requiring
values for each of the properties.

Geolocation Fields
A simple string-based field that allows applications to convert a string of comma
separated numbers into a relevant GeoJSON object - where one point equals a
coordinate, multiple points not connected are converted into lines and multiple points
with a connection are represented as polygons.

Public Fields
Public fields are a unique concept specific to Everstore, where instead of taking the
values of outgoing transactions, which is done to ensure that the properly authorised
entity is updating or creating data - we instead allow the values of incoming transactions
to define our values, in-turn allowing others to essentially vote for the value. There are
three types of public fields, each with three formats that allow for multiple use-cases:

Type Format Example Use

All String Comments (default setting)

Total String Long String (beyond byte limit)

Count String Reactions

All Float Donations

Total Float Goal

Count Float Popularity

All Integer Stats

Total Integer Preference

Count Integer Votes

Page 16 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

JSON Fields
A simple string-based field that allows applications to convert valid JSON into objects.

Total Fields
The total-field is similar to the public total-field but can instead only be updated using
the traditional outgoing transaction method used by non-public fields. When used in
combination with a string setting, it becomes possible to bypass the 38 to 78 byte limit.

Count Fields
The count-field is similar to the public count-field but can instead only be updated using
the traditional outgoing transaction method used by non-public fields.

Media Fields
Media-fields are specifically designed for holding low-grade basic images and (or) icons,
where the base64 source for the file is split between multiple transactions.

Lookup Fields
Lookup fields are often presented as select boxes that show values derived from
another field and (or) datastore and are first defined by storing a references to the
required datastore and the field with which to generate the list of values to choose from.

Records
It is the Everstore node-map that instructs the system as to the descendant address that
should be used to represent each of the individual database elements. With this
defined, we can start sending-out transactions from the relevant addresses in order to
give us those opportunities to add our arbitrary data into the available OP_Returns.

However, an Everstore record itself once re-composed by the client is actually just a
virtual construct that is assembled from a series of individual transactions that are
mapped to the application schema through assigned routes to sub-trees that hold the
entire record in its descending nodes. As an example, where we wish to discover the
embedded application schema and get the most recent record from the final datastore
of the instance (often the manually constructed relationship for that particular
application’s use-case), we would perform several sequences of events.

Page 17 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

To first establish the start of a schema, we would need to search for datastores:

1. Check if the first datastore schema exists (transactions from node 2 | 1)
2. Check if more than one datastore exists (transactions from node 2 | 2 onwards)
3. Repeat until finding no more datastores

We would then need to discover the fields for each of the datastores:

1. Check if datastore has a field (transactions from node 2 | 1 | 1)
2. Check if datastore has more fields (transactions from node 2 | 1 | 2 onwards)
3. Repeat until finding no more fields for each datastore

Using the information gathered from all of the nodes within the schema-tree, we are
then able to construct a working schema object within the application, which we now
want to use in order to query the last datastore (X) to discover the most recent entry by
switching from the schema-tree to the index-tree and checking the most recent outgoing
transaction associated with the node at 3 | X. We would not only discover the value of
the indexed field associated with that record (field 0), but it would also provide the
necessary transaction ID needed to generate the transaction-route (Y). Using the
transaction-route, we can switch to the record-tree and traverse its fields as follows:

(Figure D - Transaction-Route for Finding Fields)

Page 18 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

Relationships
The current version of Everstore requires the manual creation of relationships as
individual datastores that are able to link various datastores together using lookup
fields. If we were to take a simple example use-case where we want to register people
that are participating in specific events at different times, we might choose to use the
following schema to manage our data:

1. People Datastore

○ Email (md5 index type)
○ Name (string)

2. Event Datastore

○ Type of Event (string index type)

3. Events Datastore

○ ID (auto index type)
○ Time (datetime)
○ Person (lookup linked to name from people datastore)
○ Event (lookup linked to type of event from event datastore)

The third and final datastore in this example (Events) acts as our relationship, linking
the name of people and types of events that they have undergone together into one
datastore, which can then be made available by the application as a series of objects.

This is a similar yet simplified explanation of the example that is used and included
within the public repository under Example Everstore Event Schema, which was used to
power our example applications.

In future versions this same concept could be applied to individual instances by
abstracting the schema with one additional layer for the instances prior to then defining
the datastores for each instance. This would effectively allow a single master key to
contain up to 999,999,999 databases, allowing for any of those database to lookup any
information it had permission to from any of the other databases.

Page 19 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

Example Applications
The first example application that we built for Everstore was a browser-based serverless
interface for initiating and managing any Everstore instance, which can be used from
any device with an internet connection that supports HTML5 localStorage (for caching).

Powered by the open-source Blockstrap framework, this interface can support up to
eight different blockchains whilst also allowing the communication with the blockchains
to be conducted via a limitless choice of web-accessible APIs.

Serverless Interfaces
More information regarding how these serverless interfaces are constructed is available
from within the project’s repository. The repository is currently private and available to
select partners, but will be made available to all and open-sourced soon.

(Figure E - Screenshot of People Datastore from Everstore Interface)

Embedded Schemas
One of the features of the serverless interface is the ability to export the embedded
schema of an instance as a Javascript variable that could be pasted directly into an
external application as a way of skipping the need to discover the schema.

Page 20 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://blockstrap.com
http://everstore.io

Example Everstore Event Schema
By re-creating the schema below into your own Everstore instance, you will then be able
to reuse the supplied Attendance theme for your own records.

1. People Datastore

○ Field 0 = Email Address (md5 index type)
○ Field 1 = Full Name (string)
○ Field 2 = Date of Birth (datetime)
○ Field 3 = Gender (enumeration)
○ Field 4 = Social Profiles (object)

2. Venues Datastore

○ Field 0 = Name (string index type)
○ Field 1 = Website (url)
○ Field 2 = Country (string)
○ Field 3 = City (string)
○ Field 4 = Address (total with string type)
○ Field 5 = Location (geolocation)

3. Events Datastore

○ Field 0 = Name (string index type)
○ Field 1 = Type (enumeration)

4. Attendance Datastore

○ Field 0 = ID (auto index type)
○ Field 1 = Date (datetime)
○ Field 2 = Person (lookup linked to full name from people datastore)
○ Field 3 = Venue (lookup linked to name from venue datastore)
○ Field 4 = Event (lookup linked to name from events datastore)

You could expand upon any of this information as required, but in order to use the
included sample integration application (the Attendance Theme), you must set the
minimum field and datastore values as listed above.

Page 21 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

External Integration
The second application that was developed for Everstore was the Attendance theme,
which when used with the “Example Everstore Event Schema” would allow attendees to
independently verify their attendance of specific events. It acts as a showcase for how a
standalone third-party web-based application could access Everstore information
without needing to run its own instance of Everstore or any server-side components.

(Figure F - View of Verified Attendance)

Page 22 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

Limitations and Caveats
Although there’s no benchmark yet, we can confidently say that Everstore is likely to be
the world’s slowest database. On the plus side, it’s also the world’s only database that
can be proven immutable and is secured by thousands of globally distributed redundant
nodes that are constantly running and at no additional cost to the owner of the data. By
introducing caching layers at the application level the speeds can be vastly improved.
The example applications use localStorage to store data in the browser on the client,
which improves load times on returning visits after having stored all the data needed
locally. Traditional NoSQL databases could also be used as a smart-caching layer, but
in all cases; the trade-off between immutability and speed is prevalent.

It is worth noting that the underlying networks have their own limitations and problems.
In the case of Bitcoin, it’s network can only handle 7 transactions per second, which
means that with its philosophy, the more money spent on transaction fees, the higher
the chance of it being accepted by the network as a valid transaction and included
within the next block. If we were to set a value of US$3,800 per Bitcoin, we can
determine that it would cost up to US$10,000 to store each 1 MB of data if we were to
pay BTC 0.0001 per transaction and were limited to 38 bytes within a single transaction:

Byte Limit 38 TXs for 1 MB 26,315.79
Bytes in 1 MB 1000000 Cost per TX (US$) 0.38
US$ per 1 BTC 3800 Cost per MB 10000

This is expensive compared to Amazon[9], which costs US$0.03 per annum to store
1MB, versus US$10,000 using Everstore and the Bitcoin blockchain (at US$3,800 per
Bitcoin). However with Everstore, that cost is a one-time fee and the data is available for
as long as the network that it resides on is functioning.

It is also worth noting that the Bitcoin ecosystem currently has a long-standing
unresolved issue known as the Block Size Debate[10] that questions the 1MB block-size
limits in place since first being established eight years ago. Any project that is utilizing
OP_Returns for arbitrary data-storage also runs the risk of causing what could be
perceived as bloat upon the network. There are mass economic implications, not just for
adopting or refusing to adopt new block-sizes, or for those miners that are adopting the
alternative node implementations, but more importantly; everyone is being forced to
decide upon a definitive use-case for this distributed storage engine that is the network.

Page 23 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

Blockchain’s CAP Theorem
If you need the ultimate partition tolerance and a higher availability than AWS for the
data that you are storing then something such as Everstore and the use of immutable
storage-engines might be for you. If you’re looking for speed, consistency, and general
efficiency; you’ve definitely come to the wrong place. Different databases are good at
different things. Some are good at mass amounts of unstructured data, where others
are more suitable for reports or some for graphs. It’s fair to say that storing data in an
immutable open network is not the right place for tracking the number of likes for photos
we share of our pets wearing sunglasses, but when we are talking about tracking births,
deaths and marriages, or where the country’s budget got spent - why would we not be
insisting upon it being in an immutable data-storage engine available for all to see?

Economic Implications & Conclusions
The standardized method for inserting arbitrary data upon the majority of blockchains is
through the use of OP_Returns, which are currently limited to a single OP_Return per
transaction. This is somewhat strange, as a transaction without OP_Returns can have
as many inputs and outputs as you like, so long as you pay for the KB space used by
the script to relay that transaction to the network. It is the fact that a transaction cannot
include multiple OP_Returns that increases the blockchain bloat, not the data itself.

We propose that data should be neutral and that we should allow the network to agree
that there can and should be more than one type of block doing more than one thing.
The trouble with distributed protocols is that different people with different views want to
to do different things, and right now, everyone thinks it can only be doing just one thing.
Taking a step back, we should be able to see the accomplishment of developing a freely
available, open and immutable data-storage engine. If we can agree that is what it really
is and then let the politics play-out at an auxiliary protocol level, where heated opinions
can remain entirely focused on specific use-cases; the world would be a better place.

In summary, the significance of being able to freely store structured immutable data
within the world’s most powerful open networks has implications that reach far beyond
the mere size or frequency of blocks. Questions have many perspectives and although
the blockchain ecosystem is evolving at a rapidly increasing pace as more money and
talent is invested, much of that time and resource is unfortunately being spent creating
new distributed silos or developing centralized solutions to distributed problems that
only work within a single closed network.

Page 24 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://everstore.io

The importance of blockchain-agnosticism cannot be stressed enough.

Until there are a selection of networks as computationally secure as the current Bitcoin
blockchain that are also allowing arbitrary data encoding, or someone is able to use our
starting point of combining HD (BIP32) hierarchy with OP_Returns we have little choice.
For now, to ensure that we are able to immutably store whatever data we choose on the
blockchain of our own choice; we are instead forced to use something as complicated to
understand and process as Everstore. For more information on this, please read about
our BitDB Project - http://neuroware.io/blog/introducing-bitdb-the-complimentary-blockchain-agnositic-node/

References
The following links are provided as further information to their relevant references:

[1] Satoshi Nakamoto, Bitcoin: “A Peer-to-Peer Electronic Cash System”, 2008
https://bitcoin.org/bitcoin.pdf

[2] Paul Snow, Brian Deery, Jack Lu, David Johnston, Peter Kirby, “Factom: Business Processes
Secured by Immutable Audit Trails on the Blockchain”, 2014
https://github.com/FactomProject/FactomDocs/raw/master/Factom_Whitepaper.pdf

[3] Wayne Vaughan, Shawn Wilkinson, Jason Bukowski, Chainpoint (by Tierion), “A scalable
protocol for recording data in the blockchain and generating receipts”
https://tierion.com/chainpoint

[4] OP_RETURNs (https://en.bitcoin.it/wiki/Script)

[5] Peter Wuille, “BIP0032 - Hierarchical Deterministic Wallets”, 2012
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

[6] Ethereum, “Next-Generation Smart Contract and Decentralized Application Platform”:
https://github.com/ethereum/wiki/wiki/White-Paper

[7] Meteor, “Full-Stack Javascript Application Platform” - https://www.meteor.com/

[8] Common Data Types (https://en.wikipedia.org/wiki/Data_type)

[9] Amazon EC2 Pricing - https://aws.amazon.com/ec2/pricing/

[10] Block Size Debate, Many Views:
https://google.com/search?q=block+sizedebate&oe=utf-8#q=block+size+debate

Page 25 of 25 - Published 15th of February, 2016 Everstore v0.2 - 16th August, 2017 | http://everstore.io

http://neuroware.io/blog/introducing-bitdb-the-complimentary-blockchain-agnositic-node/
https://bitcoin.org/bitcoin.pdf
https://github.com/FactomProject/FactomDocs/raw/master/Factom_Whitepaper.pdf
https://tierion.com/chainpoint
https://en.bitcoin.it/wiki/Script
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.meteor.com/
https://en.wikipedia.org/wiki/Data_type
https://aws.amazon.com/ec2/pricing/
https://www.google.com/search?q=block+sizedebate&ie=utf-8&oe=utf-8#q=block+size+debate
http://everstore.io

